Surname
Other Names

Centre Number

Candidate Number
0

GCSE－NEW

C420U10－1

｜｜
S18－C420U10－1

PHYSICS－Component 1

Concepts in Physics

FOUNDATION TIER

WEDNESDAY， 23 MAY 2018 －AFTERNOON

2 hours 15 minutes

ADDITIONAL MATERIALS

In addition to this paper you will need a calculator and a ruler．

INSTRUCTIONS TO CANDIDATES

For Examiner＇s use only		
Question	Maximum Mark	Mark Awarded
1.	6	
2.	5	
3.	5	
4.	7	
5.	10	
6.	12	
7.	13	
8.	15	
9.	11	
10.	12	
11.	12	
12.	12	
Total	120	
12		
12		

Use black ink or black ball－point pen．
Write your name，centre number and candidate number in the spaces at the top of this page．
Answer all questions．
Write your answers in the spaces provided in this booklet．

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part－question．
The assessment of the quality of extended response（QER）will take place in question 10（c）．

EQUATION LIST

final velocity $=$ initial velocity + acceleration \times time	$v=u+a t$
distance $=1 / 2 \times($ initial velocity + final velocity $) \times$ time	$x=\frac{1}{2}(u+v) t$
$(\text { final velocity })^{2}=(\text { initial velocity })^{2}+2 \times$ acceleration \times distance	$v^{2}=u^{2}+2 a x$
change in thermal energy$=$ mass \timesspecific heat capacity$\times \underset{\text { temperature }}{\text { chane in }}$	$\Delta Q=m c \Delta \theta$
thermal energy for a change of state $=$ mass \times specific latent heat	$Q=m L$
energy transferred in stretching $=1 / 2 \times$ spring constant $\times(\text { extension })^{2}$	$E=\frac{1}{2} k x^{2}$
for gases: pressure \times volume $=$ constant (for a given mass of gas at a constant temperature)	$p V=$ constant
$\left\lvert\, \begin{aligned} & \text { potential difference } \\ & \text { across primary coil } \end{aligned} \underset{\text { current in }}{\text { primary coil }}=\begin{gathered} \text { potential difference } \\ \text { across secondary coil } \end{gathered} \times \begin{gathered} \text { current in } \\ \text { secondary coil } \end{gathered}\right.$	$V_{1} I_{1}=V_{2} I_{2}$

Answer all questions.

1. Theatre stages are lit up by using a number of spotlights.
(a) The beams from three spotlights overlap on a white stage as shown in the diagram.

(i) State the colour produced at A.
(ii) State the colour produced at B.
(b) The colours of a T-shirt, in daylight, are shown in the diagram.

Complete the table to show the appearance of the T-shirt under different colour spotlights.

Spotlight colour	T-shirt colours		
white	red	green	blue
blue		black	blue
yellow	red	\ldots	black

(c) Visible light is part of the electromagnetic (em) spectrum. Complete the diagram of the em spectrum given below.

gamma rays	$\ldots \ldots \ldots \ldots \ldots \ldots .$.	ultraviolet light	visible light	infra-red light	$\ldots \ldots \ldots \ldots \ldots .$.	radio waves

2. When a balloon is rubbed on a jumper, the balloon becomes negatively charged with static electricity.
(a) (i) State whether protons, electrons or neutrons, have moved from the jumper to the balloon.
(ii) In each of the boxes below, complete the sentences to say whether the objects repel, attract or do nothing.

(b) Static electricity is used when paint spraying car bodies.

The car body is given a positive charge. The paint droplets are given a negative charge.

Suggest two advantages of making all the paint droplets negatively charged.

1. \qquad
2. \qquad
3. Some nuclei are unstable and decay by emitting alpha particles, beta particles, neutrons or gamma rays.
(a) Complete the following nuclear decay equations.
(i) ${ }_{92}^{238} \mathrm{U} \rightarrow{ }_{90}^{234} \mathrm{Th}+$
(ii) ${ }_{6}^{14} \mathrm{C} \rightarrow{ }_{7}^{14} \mathrm{~N}+$
(b) Complete the following paragraph about the contents of an atom of uranium $\left({ }_{92}^{238} \mathrm{U}\right)$ in terms of the number of particles.

There are electrons in each atom of uranium. Each nucleus contains \qquad protons and \qquad neutrons.
4. A class of students is investigating magnetic fields around wires of different shapes. A magnetic field is produced when there is an electric current in the wire. The shape and direction of the field depends on the shape of the wire and the direction of the current.
(a) The diagram shows the direction of the current, I in a rectangular frame of wire.

On each piece of card draw the magnetic field around each vertical side of the wire frame including arrows to show the direction of the field.
(b) The diagram shows the magnetic field created by a current-carrying solenoid.

State how each of the following changes affects the magnetic field.
(i) One of the cells is removed from the circuit.
(ii) The cells are reversed.
(iii) More turns/coils are added to the solenoid.
(iv) An iron bar is placed inside the solenoid.
5. Sir Isaac Newton was an English mathematician, astronomer and physicist. He is widely recognised as one of the most important scientists of all time.

(a) Tick (\checkmark) the three boxes next to statements of Newton's Laws of Motion.

If a body A exerts a force on body B then body B exerts an equal and opposite force on body A. \square
Vectors have both magnitude and direction but scalars only have magnitude.

An object will remain at rest or in uniform motion in a straight line unless acted upon by an external resultant force. \square
Resultant force $=$ mass \times acceleration

When an object is in equilibrium, the anticlockwise moments equal the clockwise moments.

Force is proportional to pressure and the area over which it acts. \square
(b) The diagram shows the forces acting on a rocket at take-off. The force arrows are not drawn to scale.

(i) Explain, in terms of Newton's Third Law, why the rocket moves.

\qquad
(ii) Calculate the resultant force on the rocket.
(iii) The mass of the rocket is 5000000 kg . Use the equation:

$$
\text { acceleration }=\frac{\text { resultant force }}{\text { mass }}
$$

to calculate the acceleration of the rocket.

Acceleration $=$ $\mathrm{m} / \mathrm{s}^{2}$
(iv) As the rocket uses fuel its mass and weight become smaller. Nazir suggests this will not affect the acceleration because the thrust remains constant. Explain whether or not you agree with this suggestion.

BLANK PAGE

6. A group of students is investigating water waves.
(a) Look at the diagram of a wave and answer the questions below it.

Circle the correct pair of labels in each sentence.
(i) The amplitude of the wave is the distance between ($A B / A C / B C / C D$).
(ii) The wavelength of the wave is the distance between (AE / AH / CJ / GI).
(b) The diagram shows a wave travelling across the surface of water.

(i) Write down the number of waves (cycles) between X and Y .
(ii) Calculate the wavelength of the wave if the distance $X Y$ is 270 cm .
\qquad
(c) (i) State what is meant by the frequency of a wave.
\qquad
(ii) If it took 0.5 s for the wave at X to travel to Y , calculate the frequency of the wave.
(d) Use the equation:

$$
\text { wave speed }=\text { frequency } \times \text { wavelength }
$$

to calculate the wave speed of the wave shown.
(e) A different water wave is now observed. The distance between X and Y remains at 270 cm . The time for this wave to travel from X to Y remains at 0.5 s .

One student claims that the wave speed of this wave is faster than the first wave because the wavelength is longer. By referring to the equation in part (d), explain whether or not you agree with this claim.
\qquad
\qquad
\qquad
\qquad
\qquad
7. The graph shows part of the journey of a car.

Use the graph to answer the questions below.
(a) (i) State the maximum velocity of the car.
(ii) Jeremy says the total time the car moves at a constant velocity is 10 s . State whether you agree or disagree with Jeremy. Give one reason for your answer. [1]
\qquad
\qquad
(b) (i) State the time for the car to accelerate from A to B .
(ii) State the change in velocity of the car between A and B.
(iii) Calculate the acceleration of the car between A and B .

Acceleration $=$ \qquad
(iv) Explain how the acceleration of the car between 0 s and 10 s compares with your answer to part (b)(iii).
\qquad
\qquad
\qquad
(c) (i) Use an equation to calculate the distance travelled by the car between 50 s and 60 s .

Distance $=$

\qquad
(ii) Explain how the distance travelled by the car between 30 s and 40 s compares with your answer to part (c)(i).
\qquad
\qquad
\qquad
8. Students are investigating the density and change of state of ice.
(a) An ice cube tray is filled with water. When placed in a freezer it produces ice cubes such as the one shown below.

Each side of the cube is 2.0 cm long.
The ice cube has a mass of 7.2 g .
(i) Calculate the volume of the ice cube.

Volume $=$ \qquad cm^{3}
(ii) Calculate the density of ice.
\qquad
(iii) When ice melts it produces water of density $1.0 \mathrm{~g} / \mathrm{cm}^{3}$.

Compare the mass and volume of one ice cube with the mass and volume of the water produced when it melts.
(b) The graph shows how the temperature changes as ice from the freezer melts.

(i) The change of state from ice \rightarrow water is an example of a physical change. Explain how this is different from a chemical change.
\qquad
(ii) Complete the table to state what happens to the molecules in each stage of the graph.

Stage	Effect on molecules
Temperature of ice increases	
Ice melts into water	
Temperature of water increases	

(iii) An ice cube of mass 7.2 g is at its melting point. Use an equation from page 2 to calculate the thermal energy required to melt the ice cube.
(Specific latent heat of ice, $L=334 \mathrm{~J} / \mathrm{g}$).
(c) Explain, in terms of molecules, how the density changes when water is changed into steam.
\qquad
\qquad
9. Ranvir and Greg have completed practical work involving setting up circuits. They first set up the series circuit shown below.

(a) (i) Complete the following equation to show the relationship between all the potential differences shown in the diagram.
$V=$
(ii) The current in R_{1} is 0.2 A . State the current in R_{3}.
(iii) A 12 V battery is used. Use the equation:
potential difference $=$ current \times resistance to calculate the total resistance of the circuit.
(iv) The values of two of the resistors are known. $R_{1}=20 \Omega$ and $R_{3}=15 \Omega$. Calculate the value of resistor R_{2}.
(b) The circuit is now set up without R_{3}. A student states that this will have an effect on V_{1} and V_{2}. Explain whether or not you agree with this statement.
(c) Ranvir and Greg now connect the three resistors in parallel.

(i) Complete the equation to show the relationship between all the currents.
$I=$
(ii) Choose words from the box to complete the following sentences about the parallel circuit. Each statement may be used once, more than once, or not at all.

stays the same	increases	decreases

When resistors are connected in parallel the total resistance
..
When a voltmeter is connected across R_{1} and then R_{3} its reading \qquad
\qquad
10. On a particular day in the summer of 2015, the power of the wind striking a wind turbine near ${ }^{\text {Examiner }}$ only Bristol was 1500 W . The power wasted in the turbine was 600 W .
(a) Calculate the efficiency of the turbine from these figures.
(b) A coal power station releases 120 grams of CO_{2} into the atmosphere for every million joules of electricity produced but wind turbines release none whilst they are working.
(i) One person claims that generating 1000 W for 9000 s (2.5 hours) using a wind turbine saves over 1 kg of CO_{2} emissions into the atmosphere compared with using coal.

Use the equation:

$$
\text { energy transferred }=\text { power } \times \text { time }
$$

to investigate this claim.
(ii) Give a reason why it is important to attempt to reduce the amount of CO_{2} produced when generating electricity.
(c) There is a debate about whether our future demands for electricity will be met from renewable sources alone or whether nuclear power will also be needed. The table below compares a wind turbine with a nuclear power station.

	How they compare	
	wind turbine	a nuclear power station
expected lifetime (years)	20	60
mean power output (MW)	2	2000
land area needed (km²)	0.7	4.5
cost to commission (£)	3 million	4000 million
waste produced	none	radioactive waste
lifetime carbon footprint per kWh generated (units)	4.6	5

Explain what conclusions you can make about how wind turbines compare with nuclear power stations in terms of economic, environmental and sustainability issues. [6 QER]
\qquad
11. A group of students hangs masses from the end of the spring and uses a pointer to take readings of the position of the bottom of the spring against a metre ruler.

The results of their experiment are shown below.

Mass loaded on spring (g)	Force applied to spring (N)	Reading on ruler (cm)	Extension (cm)
20	0.2	5.7	0.8
40	0.4	6.5	1.6
60	0.6	$\ldots \ldots \ldots \ldots \ldots \ldots \ldots .2$	2.5
80	0.8	8.0	3.1
120	$\ldots \ldots \ldots \ldots \ldots \ldots$	9.7	5.6
140	1.4	10.5	

(a) Complete the table above.
(b) (i) Use the data in the table to plot a graph and draw a suitable line.

Force applied to spring (N)

(ii) State the force that produces an extension of 4.4 cm .

Force $=$
(iii) Calculate the spring constant, k, of the spring. Give your answer in \mathbf{N} / \mathbf{m}.
(iv) Two springs, identical to the one above, are now hung side-by-side as shown below.

Examiner

Draw a line on the grid on the previous page to show how the extension changes with force for this parallel arrangement of springs.
12. Riding a bike is a matter of balance and strength. Gears on bikes help the rider when the gradient of the road changes.

The diagram below shows the pedal arm of length 18 cm at a position level with the ground. At this instant a force of 650 N is applied vertically downwards.

(a) (i) Calculate the moment of the 650 N force on the pedal in $\mathbf{N} \mathbf{m}$.

Moment = \qquad N m
(ii) This moment applies a force, F, to the chain which is at half the distance of the pedal from the axle $(9 \mathrm{~cm})$. Circle the box that gives the correct value of the force, F.

| 58.5 N |
| :---: | $117 \mathrm{~N} \quad 234 \mathrm{~N} \quad 325 \mathrm{~N} \quad 1300 \mathrm{~N}$

(b) The following table gives the gear ratio of the number of teeth on the front chainring to the number of teeth on the sprocket on the rear wheel on a 21 gear bike. For example, 12t represents 12 teeth.

Number of teeth on the front chainring	Number of teeth on rear sprocket wheels						
	12t	13t	15t	17t	20 t	24 t	28 t
	Gear ratios in each gear						
	$1^{\text {st }}$ gear	$2^{\text {nd }}$ gear	$3^{\text {rd }}$ gear	$4^{\text {th }}$ gear	$5^{\text {th }}$ gear	$6^{\text {th }}$ gear	$7^{\text {th }}$ gear
28 t (15t ${ }^{\text {st }}$ gear)	2.33:1	2.15:1	1.87:1	1.65:1	1.40:1	1.17:1	1.00:1
38 t (2 ${ }^{\text {nd }}$ gear)	3.17:1	2.92:1	2.53:1	2.24:1	1.90:1	1.58:1	1.36:1
48 t ($3^{\text {rd }}$ gear)	4.00:1	3.69:1	3.20:1	2.82:1	2.40:1	2.00:1	1.71:1

(i) When the front chainring is in second gear, the gear ratios range from 1.36:1 to 3.17:1. Suggest a reason why it is not essential to have the second gear on the front chainring of a bike.
\qquad
\qquad
(ii) The pedals of the bike rotate once every 0.8 s .
I. Calculate the frequency of rotation of the front chainring.

II. The cyclist is riding on a level road, using the $2^{\text {nd }}$ gear on the front chainring and $6^{\text {th }}$ gear on the rear sprocket. Use the information in the table and your answer to (b)(ii)I to calculate the number of rotations of the rear wheel each second.

III. The rear wheel has a circumference of 236 cm .

Use your answer to (b)(ii)II to calculate the speed of the bike in m / s.
\qquad m/s

